Systèmes hyperboliques partiellement dissipatifs ou diffusifs, en régularité critique
ENS ou JussieuDepuis les travaux fondateurs de S. Kawashima dans sa thèse en 1987, on dispose d’une condition suffisante assez simple à vérifierassurant l’existence de solutions fortes globales proches d’un état constant stable pour les systèmes hyperboliques quasi-linéaires symétrisables comportanten plus un terme dissipatif ou diffusif de rang éventuellement non maximal.Ces résultats ont été revisités il y a quelques années par K. Beauchard et E. Zuazua, et une méthode systématique de construction d'une fonctionnelle de Lyapunov adéquate a été proposée, qui permet, au moins au niveau du linéarisé près d’un état constant, […]