Designed and built with care, filled with creative elements

Top

Méthodes de continuité pour des systèmes champ-moyen : limites et fluctuations

Les systèmes de particules en interaction sont utilisés pour modéliser de nombreux phénomènes, allant de la physique statistique à la macro-économie. Pour des systèmes de particules en interaction champ-moyen, la limite d’échelle est connue depuis Boltzmann sous le nom de « propagation du chaos ».Pour de tels systèmes à coefficients réguliers, je présenterai une méthode particulièrement simple permettant de passer à la limite. Cette méthode (qui remonte à Tanaka, 1984) permet une représentation intuitive de ces systèmes en grande dimension, qui repose sur une analogie avec les équations différentielles ordinaires. […]

Un exemple de turbulence faible dans l’équation de Schrödinger

Salle W

Dans cet exposé, j'introduirai une EDP bien connue, l'équation de Schrödinger en présence d'un potentiel $$i \partial_t u = -\Delta u +V(t) u$$ où $\Delta$ est le laplacien usuel, $V(t)$ est un potentiel réel lisse en temps et en espace et le domaine est le tore 2D. J'expliquerai ensuite comment cette équation permet d'exhiber un exemple élémentaire du phénomène de \textit{turbulence faible}, à savoir l'existence de solutions lisses dont les normes $H^s,\ s>0$ explosent à l'infini, bien que toutes les solutions soient globales et voient leur norme $L^2$ conservée. J'en […]

Paul Wang : Théorie catégorique des systèmes

Salle W

Qu'est-ce qu'un système ? Dans quelle mesure est-il possible d'étudier un système en le décomposant en sous-systèmes ? La théorie catégorique des systèmes, que j'illustrerai (sans utiliser de notions techniques !) avec l'exemple des systèmes déterministes à temps discret, vise à fournir des réponses à ces questions.