La théorie conforme de Liouville a été introduite de manière non rigoureuse par Polyakov dans un papier fondamental de 1981. C’est une théorie quantique des champs (quantum field theory) en deux dimensions qui a une propriété supplémentaire d’invariance conforme, ce qui en fait une théorie conforme des champs. Je vais essayer de donner un aperçu de la construction rigoureuse de cette théorie donnée dans un papier tout aussi fondamental de David, Kupiainen, Rhodes et Vargas en 2015. Cette construction repose sur une version judicieusement choisie du champ libre Gaussien et sur son chaos multiplicatif Gaussien associé. J’essayerai également de montrer par un calcul simple en quoi cette théorie est « intégrable », c’est-à-dire qu’on peut espérer calculer de manière exacte un certain nombre d’observables. (Cette intégrabilité a notamment conduit Kupiainen, Rhodes et Vargas vers une preuve rigoureuse de la célèbre formule DOZZ).
- Séminaire informel de probabilités