The determinant method gives upper bounds for the number of rational points of bounded height on or near algebraic varieties defined over global fields. There is a real-analytic version of the method due to Bombieri and Pila and a p-adic version due to Heath-Brown. The aim of our talk is to describe a global refinement of the p-adic method and some applications like a uniform bound for non-singular cubic curves which improves upon earlier bounds of Ellenberg-Venkatesh and Heath-Brown.
- Séminaire Géométrie et théorie des modèles