Sur les corps de nombres, l’obstruction de Brauer-Manin est la seule obstruction au principe local-global pour les torseurs sous des groupes linéaires connexes. Dans un article récent, Colliot-Thélène, Parimala et Suresh ont introduit un nouveau type d’obstruction au principe local-global sur les corps de fonctions de schémas réguliers intègres de dimension quelconque, et ils se demandent notamment si c’est la seule obstruction au principe local-global pour les torseurs sous des tores sur C((x,y)). Dans cet exposé, j’expliquerai pourquoi cette question admet une réponse affirmative.
- Variétés rationnelles