Dans cet exposé, nous verrons que certaines inégalités fonctionnelles jouent un rôle crucial dans l’étude du comportement en temps grand de solutions de certaines EDP. Plus précisément, nous utiliserons des méthodes dites de dissipation d’entropie (dont le but est t’établir des versions quantitatives du mécanisme de décroissance de l’entropie) dans le cas de l’équation de Fokker-Planck. Nous étudierons ensuite le cas plus complexe de l’équation de Boltzmann (homogène en espace) et verrons que ces méthodes fournissent également des résultats sur le comportement en temps grand des solutions de l’équation. Néanmoins, il est parfois utile de combiner ces résultats avec une étude précise du linéarisé pour obtenir de meilleurs taux de décroissance.
- ANNÉE 2018-2019
- Archives Séminaire « Des mathématiques »
- Séminaire Des mathématiques