In this talk we will discuss questions concerning the qualitative and quantitative behavior of integral points on log K3 surfaces. After describing some examples we will consider the question of growth rate of integral points on log K3 surfaces. We will discuss an asymptotic formula produced by a circle method heuristic due to Tim Browning that was established for other types of varieties, such as toric varieties whose log anti-canonical class is big (Tschinkel, Takloo-Bighash, Chambert-Loir), but argue that it requires some modification in order to fit the case of log K3 surfaces. We will then suggest a possible revised formula, which seems to agree with preliminary numeric simulations.
- Variétés rationnelles