Designed and built with care, filled with creative elements

Top
Image Alt

Irreducibility of Polynomials over Number Fields is Diophantine

  /  Évènements
Chargement Évènements
  • Cet évènement est passé

20

Mai

Irreducibility of Polynomials over Number Fields is Diophantine

We show that irreducibility of a polynomial in any number of variables over a number field is a diophantine condition, i.e. captured by an existential formula. This generalises a previous result by Colliot-Thélène and Van Geel that the set of non-nth-powers is diophantine for any n. Our method is heavily based on the Brauer group, originating from Poonen’s use of quaternion algebras as a technical tool for first-order definitions in number fields.

- Variétés rationnelles

Détails :

Orateur / Oratrice : Philip Dittmann
Date : 20 mai 2016
Horaire : 14h00 - 15h00
Lieu : ENS Salle W