La notion de sous-groups approximatif, introduite récemment par T. Tao, permet de comprendre les parties finies A d’un groupe dont la taille de l’ensemble des produits AA est beaucoup plus petite que |A|^2. Cette notion et les méthodes combinatoires utilisées pour l’étudier ont été couronnées de succès par le rôle qu’elles jouent dans la théorie spectrale des graphes (graphes expanseurs) d’une part et pour les applications arithmétiques qui en découlent (crible de Bourgain-Gamburd-Sarnak). Récemment, en connection avec la théorie des modèles et la stabilité, Hrushovski s’est intéressé au problème de la classification des groupes approximatifs et a réussi à obtenir plusieurs résultats remarquables dans cette direction. Entre autres, une classification des sous-groupes approximatifs des groupes linéaires, ainsi qu’une version améliorée du fameux théorème de Gromov sur les groupes à croissance polynomiale. Dans cet exposé je présenterai ces travaux ainsi qu’une autre approche (travail en commun avec Ben Green et Terence Tao) qui permet de retrouver certains de ces résultats et d’en donner des bornes précises, lesquelles sont souvent cruciales pour les applications.
- Séminaire Géométrie et théorie des modèles