To every right-angled Coxeter G group belongs a unique countable Tits building B(G) with infinite residues. Using a suitable language, we study the first order theory of B(G). It has a nice axiomatization, is omega-stable, equational and has trivial forking. It is not n-ample, when n is the number of generators of G. (Joint work with A. Baudisch and A. Martín Pizarro)
- Séminaire Géométrie et théorie des modèles