Soit K le corps de fonctions d’une courbe p-adique, G un groupe semi-simple simplement connexe sur K et X un G-torseur. Une conjecture de Colliot-Thélène, Parimala et Suresh énonce que si pour toute valuation discrète v de K, X a des points à valeurs dans le complété K_v, alors X a un K-point rationnel. Dans cet exposé, on discute cette conjecture pour les torseurs de certains groupes de types classiques. Notre méthode s’applique également au cas où K est le corps des fractions d’un anneau local intègre hensélien excellent de corps résiduel fini.
- Variétés rationnelles