Soit X une variété projective lisse sur in corps de nombres, fibrée au dessus d’une courbe C, à fibres géométriquement intègres. En supposant que les fibres d’un sous-ensemble hilbertien généralisé satisfont le principe de Hasse (resp. l’approximation faible) et la finitude du groupe de Tate-Schafarevitch de la jacobienne de C), on montre que l’obstruction de Brauer-Manin provenant de la courbe d’en bas est la seule au principe de Hasse (resp. à l’approximation faible) pour les zéros-cycles de degré 1 sur X.
- Variétés rationnelles