Les Beta-ensembles sont une famille de mesures de probabilités sur apparaissant naturellement dans l’étude de certains modèles de matrices aléatoires – les plus connus d’entre eux étant les ensembles invariants orthogonaux : Gaussian Orthogonal Ensemble, resp. Unitary ou Symplectic. Ces mesures se généralisent naturellement à des contextes plus larges, et leur étude se retrouve à la croisée de divers domaines des probabilités: matrices aléatoires, donc, mais aussi physique statistique, combinatoire, systèmes intégrables, etc. Je présenterai quelques aspects de leur étude, en parlant notamment d’une remarquable représentation tridiagonale, de grandes déviations pour la mesure empirique, et d’une stratégie de preuve pour établir le théorème central limite pour les fluctuations de la mesure empirique.