Given a number field k and a prime number p, we are interested in mixed Artin-Tate-motives M over k and in the ell-adic Galois representations attached to them. With these objects one can associate so-called Tate-Shafarevich groups. Their vanishing is, by construction, the obstruction to certain local-global principles. I will show how Leopoldt’s conjecture for k and p follows from the finiteness of these groups.
- Variétés rationnelles