La théorie de Bruhat-Tits permet de classifier les groupes réductifs sur un corps valué hensélien et partant sur un corps F de séries formelles itérées sur un corps k. Si G/F est un groupe réductif, nous montrerons que le groupe de classes de R-équivalence G(F)/Rest isomorphe à un groupe H(k)/R où H est un groupe algébrique linéaire. Cette technique de spécialisation, issue des exemples de Platonov de groupes spéciaux linéaires, permet de construire de nouveaux cas de variétés de groupes non rationnelles.
- Variétés rationnelles