Given a pair of models Kprec L of a first-order theory T, the pair is said to be stable if the following property holds: all types over K which are realized in L are definable. Marker and Steinhorn characterized stable pairs of models of o-minimal theories as pairs K prec L where K is Dedekind complete in L. In this talk we provide a characterization of stable pairs of algebraically closed valued fields K prec L. To get a flavor of the topic, different examples will be discussed and a […]
We establish for the category of semialgebraic sets and functions on arbitrary real closed fields a full Lebesgue measure and integration theory such that the main results from the classical setting hold. The construction involves methods from model theory, o-minimal geometry, valuation theory and the theory of ordered abelian groups. We set up the construction in such a way that it is uniquely determined by data that can be formulated completely in terms of the given real closed field. We apply our integration theory to questions on semialgebraic geometry and […]