Designed and built with care, filled with creative elements

Top

Automorphismes extérieurs de groupes algébriques.

ENS Salle W

Pour un groupe algébrique linéaire absolument simple de type adjoint ou simplement connexe, une obstruction à l'existence d'automorphismes extérieurs provient de la classe de Tits. Dans cet exposé, basé sur un travail en collaboration avec Anne Quéguiner-Mathieu, on montre par des exemples que l'annulation de cette obstruction ne suffit pas à garantir l'existence d'automorphismes extérieurs. Ce résultat donne une réponse négative à une question de Garibaldi-Petersson.

Groupes algébriques commutatifs à isogénie près.

ENS Salle W

Les schémas en groupes commutatifs de type fini sur un corps k forment une catégorie abélienne C. Lorsque k est algébriquement clos, la dimension homologique de C vaut 1 en caractéristique nulle (Serre) et 2 en caractéristique positive (Oort). Sur un corps parfait, cette dimension peut être arbitrairement grande (Milne). L'exposé portera sur la catégorie quotient de C par la sous-catégorie F formée des schémas en groupes finis. On verra en particulier que la dimension homologique de C/F est 1 pour tout corps k.