Designed and built with care, filled with creative elements

Top

Geometric invariants that are encoded in the Newton polygon

ENS Salle W

Let k be a field and let P be a lattice polygon, i.e. the convex hull in R^2 of finitely many non-collinear points of Z^2. Let C/k be the algebraic curve defined by a sufficiently generic Laurent polynomial that is supported on P. A result due to Khovanskii states that the geometric genus of C equals the number of Z^2-valued points that are contained in the interior of P. In this talk we will give an overview of various other curve invariants that can be told by looking at the […]

Determining finite simple images of finitely presented groups

ENS Salle W

I will discuss joint work with Martin Bridson and Martin Liebeck which addresses the question: for which collections of finite simple groups does there exist an algorithm that determines the images of an arbitrary finitely presented group that lie in the collection? We prove both positive and negative results. For a collection of finite simple groups that contains infinitely many alternating groups, or contains classical groups of unbounded dimensions, we prove that there is no such algorithm. On the other hand, for a collection of simple groups of fixed Lie […]

Cell Decomposition for P-minimal structures: a story

ENS Salle W

P-minimality is a concept that was developed by Haskell and Macpherson as a p-adic equivalent for o-minimality. For o-minimality, the cell decomposition theorem is probably one of the most powerful tools, so it is quite a natural question to ask for a p-adic equivalent of this.In this talk I would like to give an overview of the development of cell decomposition in the p-adic context, with an emphasis on how questions regarding the existence of definable skolem functions have complicated things. The idea of p-adic cell decomposition was first developed […]