Designed and built with care, filled with creative elements

Top

Beyond o-minimality, and why

Salle W ENS

O-minimal structures on the real field have many desirable properties. As examples: (a) Hausdorff (and even packing) dimension agrees with topological dimension on locally closed definable sets. (b) Locally closed definable sets have few rational points (in the sense of the Pila-Wilkie Theorem). (c) For each positive integer p, every closed definable set is the zero set of a definable C^p function. (d) Connected components of definable sets are definable.But to what extent is o-minimality necessary for these properties to hold? I will discuss this question, and illustrate via examples […]

Tame Expansions of o-minimal Structures

Salle W ENS

Expanding a model theoretically `tame' structure in a way that it stays `tame' has been a theme in the recent years. In the first part of this talk, we present a history of work done in that frame. Then we focus on the case of expansions of o-minimal structures by a unary predicate. There is a dividing line according to whether the predicate is dense or discrete

Zéros et points rationnels des fonctions analytiques ou oscillant.

Salle W

Compter les points rationnels de hauteur bornée dans le graphe d'une fonction, ou plus généralement d'une courbe (plane), se ramène à estimer le nombre Z_d de points d'intersection de cette courbe avec un ensemble algébrique de degré d donné. J'expliquerai - d'une part comment on peut produire des familles de fonctions analytiques sur telle que Z_d est polynomialement borné en d, et comment une telle borne assure que le graphe d'une telle fonction recèle moins de log?(T) points rationnels de hauteur < T, - d'autre part comment on peut traiter […]