Designed and built with care, filled with creative elements

Top

Characterizing NIP henselian fields

ENS Salle W

In this talk, we characterize NIP henselian valued fields modulo the theory of their residue field. Assuming the conjecture that every infinite NIP field is either separably closed, real closed or admits a non-trivial henselian valuation, this allows us to obtain a characterization of all theories of NIP fields.

The Mumford-Tate conjecture implies the algebraic Sato-Tate conjecture

ENS Salle W

The famous Mumford-Tate conjecture asserts that, for every prime number l, Hodge cycles are Q_l linear combinations of Tate cycles, through Artin's comparisons theorems between Betti and étale cohomology. The algebraic Sato-Tate conjecture, introduced by Serre and developed by Banaszak and Kedlaya, is a powerful tool in order to prove new instances of the generalized Sato-Tate conjecture. This previous conjecture is related with the equidistribution of Frobenius traces.Our main goal is to prove that the Mumford-Tate conjecture for an abelian variety A implies the algebraic Sato-Tate conjecture for A. The […]

Une construction d’extensions faiblement non ramifiées d’un anneau de valuation

ENS Salle W

Étant donné un anneau de valuation V de corps résiduel F et contenant un corps k, et une extension k' de k, on cherche à construire une extension V' de V contenant k', d'idéal maximal engendré par celui de V, et de corps résiduel composé de F et k'. On y parvient notamment si F ou k' est séparable sur k.