Hilbert’s fifth problem and applications
ENS Salle WHilbert's fifth problem asks whether every locally euclidean group G can be equipped with a real analytic structure (compatible with the topology) so that the group operations become real analytic
Hilbert's fifth problem asks whether every locally euclidean group G can be equipped with a real analytic structure (compatible with the topology) so that the group operations become real analytic
I will survey some results on definable groups in o-minimal structures, some old, some new, emphasizing the interplay between algebra, logic, and topology. In particular I will show how a combination of techniques from model theory and algebraic topology lead to the determination of the definable homeomorphism type of definable abelian groups in dimension not equal to 4 (joint work with E. Baro). If time permits, I will consider the problem of finding a tame definable context, larger than o-minimality, which is suitable for the study of universal covers (work […]
Le groupe de Cremona Crn(C) est le groupe des transformations birationnelles de Cn. Au contraire des groupes de matrices, on ne sait pas, si n?oo2, s'il possède des sous-groupes de type fini non résiduellement finis. Je montrerai une version faible dans cette direction: il est sofique, c'est-à-dire approximable, en un sens convenable, par des groupes finis (notion introduite par M. Gromov et B. Weiss). J'introduirai en détail toutes les notions utilisées.