Hensel minimality and counting in valued fields
En ligneHensel minimality is a new axiomatic framework for doing tame geometry in non-Archimedean fields, aimed to mimic o-minimality. It is designed to be broadly applicable while having strong consequences. We will give a general overview of the theory of Hensel minimality. Afterwards, we discuss arithmetic applications to counting rational points on definable sets in valued fields. This is partially joint work with R. Cluckers, I. Halupczok and S. Rideau-Kikuchi, and partially with V. Cantoral-Farfan and K. Huu Nguyen.