Taming perfectoid fields
IHP salle 01Tilting perfectoid fields, developed by Scholze, allows to transfer results between certain henselian fields of mixed characteristic and their positive characteristic counterparts and vice versa. We present a model-theoretic approach to tilting via ultraproducts, which allows to transfer many first-order properties between a perfectoid field and its tilt (and conversely). In particular, our method yields a simple proof of the Fontaine-Wintenberger Theorem which states that the absolute Galois group of a perfectoid field and its tilt are canonically isomorphic. A key ingredient in our approach is an Ax-Kochen/Ershov principle for […]