Propriétés topologiques des groupes d’automorphismes de structures omega-stables omega-catégoriques
Sophie Germain salle 1016Nous discuterons des liens entre les proprié
Nous discuterons des liens entre les proprié
L'exposé portera sur une version forte de quelques questions classiques de la théorie inverse de Galois qui demande que toutes les extensions galoisiennes de Q de groupe G donné puissent être obtenues par spécialisation d'une même extension galoisienne E/Q(T) de groupe G. Après avoir replacé cette variante dans le contexte de la théorie inverse de Galois, j'expliquerai comment la mettre en défaut. Il s'agit d'un travail en cours avec Joachim König.
Une question célèbre posée par Colliot-Thélène demande si l'obstruction de Brauer-Manin à l'approximation faible est la seule obstruction pour les variétés rationnellement connexes. Dans cet exposé, je parlerai du cas particulier des espaces homogènes des groupes linéaires, où la question a été réduite au cas encore plus particulier des espaces homogènes de SLn à stabilisateur fini. Je donnerai notamment deux raisons pour lesquelles ce dernier problème, d'apparence plus simple, est pourtant loin d'être résolu. La première consiste en un lien entre cette question et le problème de Galois inverse. La […]
Les résultats dont je parlerai sont motivés par le Problème Inverse de Galois Régulier (PIGR):montrer que tout groupe fini G est le groupe de Galois d'une extension galoisienne F/Q(T) avec Q algébriquement clos dans F.Je présenterai deux types de résultats. J'expliquerai d'abord que certaines variantes fortes liées aux notions d'extensions génériques, d'extensions paramétriques et de type de ramification paramétriques ne sont pas vraies. Puis, je montrerai une conséquence forte du PIGR liée à une conjecture de Malle sur le nombre d'extensions galoisiennes de Q de groupe donné et de discriminant […]
Dans cet exposé, nous essayerons d'expliquer l'utilisation de la théorie des modèles des groupes de rang fini et de la notion d'orthogonalité dans les preuves modèles théoriques de la conjecture de Mordell-Lang pour les corps de fonction, à la fois dans la preuve originelle de Hrushovski et dans des travaux plus récents sur le sujet (en commun avec Franck Benoist et Anand Pillay). Nous parlerons en particulier de l'utilisation du “
I will discuss model-theoretic developments stemming from a theorem of Chatzidakis, van den Dries and Macintyre, which states that given a formula &phi
Dans son article Stable group theory and approximatesubgroups (2011), Hrushovski montre (et utilise de manière essentielle)un résultat, auquel on se réfère depuis comme le théorème dustabilisateur, qui permet sous certaines hypothèse locales(mais sansstabilité ni simplicité) de construire des groupes (stabilisateurs d'untype, dans un certain sens) infiniment définissables.Tout récemment, dans un travail sur les Groups with f-generics in NTP_2and PRC fields, Montenegro, Onshuus et Simon en démontrent uneversion un petit peu différente, avec des hypothèses un peu plus fortes,mais une preuve plus simple. C'est cette version dont je me propose devous […]