Designed and built with care, filled with creative elements

Top

TBA

ENS Salle W

Resolution of singularities by p-alterations

de Jong proved that any variety X can be desingularized by an alteration f:X'-->X, i.e. a proper surjective generically finite morphism. This was strengthened by Gabber as follows: f can be chosen of degree prime to a fixed prime l invertible on X.In this talk, I'll tell about the most recent progress on the subject: if X is of finite type over a quasi-excellent threefold then one can desingularize X by an alteration whose degree is only divisible by primes non-invertible on X. We will also discuss finer results that […]

The Base Point Free Theorem in positive characteristic

In positive characteristic the Base Point Free Theorem is still an open problem. In a joint work with Jakub Witaszek and Yusuke Nakamura, we proved the Base Point Free theorem for varieties of dimension three with log canonical singularities defined over the algebraic closure of a finite field. I will give an introduction to the problem and describe the tools that we used in the proof.

Semisimplicité de la cohomologie quantique de certaines variétés de Fano

Je donnerai une condition suffisante pour que l'anneau de cohomologie quantique soit semisimple et expliquerai comment l'appliquer à certaines variétés de Fano ayant un grand indice. Je considérerai tout particulièrement l'exemple des sections linéaires de grassmanniennes de droites.

Cohomology jump loci

ENS Salle W Escalier B 4è étage Toits du DMA

Firstly, we propose and illustrate a refinement of Deligne?RTMs principle: every infinitesimal deformation problem over a field of characteristic zero with cohomology constraints is governed by a differential graded Lie algebra together with a module. Secondly, we review recent results about the global structure of cohomology jump loci of rank one local systems. Finally, we address future directions for other types of jump loci. All this is joint work with Botong Wang.

Sur la stabilité des fibrés tangents d’espaces hermitiens symétriques

ENS Salle W Escalier B 4è étage Toits du DMA

Soit Y un espace hermitien symétrique. Son fibré tangent est stable au sens de la pente par rapport à la polarisation canonique. Dans cet exposé, on s?RTMintéressera à la question de savoir en restriction à quelles sous-variétés X de Y ce fibré reste stable. Plusieurs résultats généraux montrent que c?RTMest le cas pour des intersections complètes de grand degré. Par un argument cohomologique, nous montrerons que c?RTMest en fait le cas pour toutes les intersections complètes de dimension au moins 3, en dehors d?RTMune liste de contre-exemples évidents. En dimension […]