Designed and built with care, filled with creative elements

Top

Analyticity of the streamlines for periodic traveling free surface water waves with vorticity

IHP Salle 314

The streamlines of periodic irrotationaltraveling water waves are known to be real-analytic,with exception of the free surface in the case thewave of greatest height which has a corner at the wavecrest (the lateral tangents being at an angle of 2pi/3).The regularity of waves of small and moderate amplitudeis, perhaps surprisingly, little affected by thepresence of vorticity in the flow. This is joint workwith J. Escher.

A free boundary problem for thin films

IHP salle 201

The lubrication approximation leads to a fourth order degenerate equation modeling the evolution of small viscous droplets on a solid support (the thin film equation). Along the contact line (the free boundary), the solution must satisfy a gradient condition (contact angle condition).While many existence and regularity results are known for solutions with zero contact angle, the only existence result with non-zero contact angle is due to F. Otto and only holds in some particular framework (Hele-Shaw cell). We consider a singular perturbation approach to generalize Otto's result.

Dynamique générique des équations paraboliques

IHP salle 201

Le sujet de cet exposé est la dynamique qualitative générique d'équations paraboliques scalaires du type $u_t=Delta u+f(x,u,abla u)$ sur un domaine $Omega$ borné. Les équilibres de ces équations sont-ils hyperboliques ? Peut-il y avoir des orbites périodiques et si oui, sont-elles isolées ? La dynamique engendrée par les EDP paraboliquesest-elle simple ou peut-elle exhiber du chaos ? Reste-t-elle qualitativement la même quand on change un peu les paramètres de l'équation ? On verra que la réponse à ces questions nécessite des théorèmes de type prolongement unique sur l'EDP et une […]