The lubrication approximation leads to a fourth order degenerate equation modeling the evolution of small viscous droplets on a solid support (the thin film equation). Along the contact line (the free boundary), the solution must satisfy a gradient condition (contact angle condition).While many existence and regularity results are known for solutions with zero contact angle, the only existence result with non-zero contact angle is due to F. Otto and only holds in some particular framework (Hele-Shaw cell). We consider a singular perturbation approach to generalize Otto's result.
Le sujet de cet exposé est la dynamique qualitative générique d'équations paraboliques scalaires du type $u_t=Delta u+f(x,u,abla u)$ sur un domaine $Omega$ borné. Les équilibres de ces équations sont-ils hyperboliques ? Peut-il y avoir des orbites périodiques et si oui, sont-elles isolées ? La dynamique engendrée par les EDP paraboliquesest-elle simple ou peut-elle exhiber du chaos ? Reste-t-elle qualitativement la même quand on change un peu les paramètres de l'équation ? On verra que la réponse à ces questions nécessite des théorèmes de type prolongement unique sur l'EDP et une […]
I will present recent joint work with Charles Smart, in which we prove a Harnack inequality for fully nonlinear elliptic equations in dimension $d$ with possibly unbounded ellipticity-- provided the ellipticity belongs to $L^d$. This yields a stochastic homogenization result for such equations, with applications to random diffusions in (strictly elliptic) random environments.