Considérons une marche aléatoire simple dans Z^d indexée par un arbrealéatoire choisi uniformément au hasard dans l’ensemble des arbres planairesde n sommets, et soit R(n) le nombre de points visités par cette marche.On montre que, si d>4, R(n)/n converge vers une constante strictementpositive, alors que si d=4, (log n)*R(n)/n converge vers (Pi^2)/2. Enpetites dimensions d
- Séminaire informel de Probabilités et Statistiques