On s’intéressera au spectre des matrices d’adjacence de graphes aléatoireset plus particulièrement à la masse totale de la partie continue de lamesure spectrale ou densité d’état. On verra notamment que la mesurespectrale de la percolation par arêtes sur Z^2 contient une partie continuenon triviale dans le régime surcritique. Le même résultat est vrai pour lamesure spectrale limite d’un graphe d’Erdös-Rényi surcritique et pour lamesure spectrale d’arbres aléatoires unimodulaires avec au moins deux finstopologiques. C’est un travail en collaboration avec Arnab Sen et BalintVirag disponible sur le lien http://arxiv.org/abs/1308.3755
- Séminaire informel de Probabilités et Statistiques