Dans cet exposé, nous présenterons une généralisation des groupes de Frobenius : les quasi-groupes de Frobenius. On dit qu’une paire de groupes C < G est un quasi-groupe de Frobenius si C est d’indice fini dans son normalisateur (dans G) et s’il satisfait la propriété TI, i.e, deux conjugués distincts de C s’intersectent trivialement.
Du point de vue de la théorie des modèles, nous travaillerons dans un contexte où l’existence d’une bonne notion de dimension (finie) sur les ensembles définissables est assurée (ce qui englobe les univers rangés et les structures o-minimales).
En s’inscrivant dans le prolongement des travaux classiques de l’école de Bachmann et d’un article plus récent de A. Deloro et J. Wiscons, nous examinerons dans quelle mesure l’étude des géométries d’incidence induites par les involutions au sein des quasi-groupes de Frobenius permet d’identifier dans un cadre dimensionnel les groupes classiques GA_1(C), PGL_2(C) et SO_3(R).
- Théorie des Modèles et Groupes