Grauert et Manin ont montré qu’une famille non-isotriviale de courbes compactes hyperboliques n’a qu’un nombre fini de sections. Nous montrerons un analogue pour une famille nonbirationnellement isotriviale d’hypersurfaces de grand degré et de grande variabilité d’un espaceprojectif complexe : il existe un fermé strict de l’espace total qui contient l’image de toutes les sections.
- Variétés rationnelles