Manjul Bhargava has recently made significant progress on the arithmetic ofelliptic curves over Q. Together with his student Arul Shankar, he has calculated the averageorder of the n-Selmer group, for n = 2,3,4,5, and has obtained an upper bound on theaverage rank (which is less than one). To do this, they identify elements of the Selmer groupwith certain orbits in a representation of a semi-simple group over Q, and estimatethe number of orbits of bounded height using the geometry of numbers. In this talk, which is a report on joint work with Bhargava, I will explain how thesetechniques can be extended to study the arithmetic of hyperelliptic curves of a fixedgenus over Q, with a marked rational Weierstrass point.
- Variétés rationnelles