Les courbes de Reichardt-Lind et de Schinzel sont des exemples classiques de courbes projectives et lisses sur Q possédant un point adélique mais pas de point rationnel. Je montrerai que leur groupe fondamental arithmétique n’admet pas de section au-dessus du groupe de Galois absolu de Q. Cela répond à une question de Stix et confirme, dans le cas de la courbe de Schinzel, la prédiction fournie par la conjecture des sections de Grothendieck.
- Variétés rationnelles