Designed and built with care, filled with creative elements

Top

On the conjecture of Ihara/Oda-Matsumoto

ENS Salle W

Following the spirit of Grothendieck's Esquisse d'un Programme, the Ihara/Oda-Matsumoto conjecture predicted a combinatorial description of the absolute Galois group of Q based on its action on geometric fundamental groups of varieties. This conjecture was resolved in the 90's by Pop using anabelian techniques. In this talk, I will discuss the proof of stronger variant of this conjecture, using mod-ell two-step nilpotent quotients, while highlighting some connections with model theory.

Géométrie des arcs et singularités

ENS. salle W

Soulignée par Nash dans les années 60, l'interaction entre la géométrie des espaces d'arcs et la théorie des singularités s'est fortement amplifiée sous l'influence de la théorie de l'intégration motivique notamment. Dans cet exposé, nous introduirons le schéma des arcs associé à une variété algébrique et donnerons quelques illustrations de cette interaction. Parmi elles, nous parlerons de l'interprétation (possible) du point de vue des singularités d'un théorème de Drinfeld et Grinberg-Kazhdan démontré au début des années 2000. (Cette dernière partie de l'exposé s'appuie sur une collaboration avec David Bourqui.)

The geometry of combinatorially extreme algebraic configurations

ENS. salle W

Given a system of polynomial equations in m complex variables with solution set of dimension d, if we take finite subsets X_i of C each of size at most N, then the number of solutions to the system whose ith co-ordinate is in X_i is easily seen to be bounded as O(N^d). We ask: when can we improve on the exponent d in this bound?Hrushovski developed a formalism in which such questions become amenable to the tools of model theory, and in particular observed that incidence bounds of Szemeredi-Trotter type […]