Selon la conjecture d'algébricité de Cherlin-Zilber, tout groupe simple et infini de rang de Morley fini est un groupe algébrique défini sur un corps algébriquement clos.Il y a presque 40 ans, Cherlin avait montré que s'il existe un contre-exemple à cette conjecture, alors il est de rang de Morley au moins 3. Il avait aussi montré que s'il est de rang 3, alors c'est un mauvais groupe : ses sous-groupes définissables infinis propres sont de rang de Morley 1, ils sont en particulier abéliens.Dans cet exposé, nous montrerons pourquoi un […]
Let X be a set definable in some o-minimal structure. The Pila-Wilkie theorem (in its basic form) states that the number of rational points in the transcendental part of X grows sub-polynomially with the height of the points. The Wilkie conjecture stipulates that for sets definable in R_exp, one can sharpen this asymptotic to polylogarithmic.I will describe a complex-analytic approach to the proof of the Pila-Wilkie theorem for subanalytic sets. I will then discuss how this approach leads to a proof of the `restricted Wilkie conjecture', where we replace R_exp […]
I will discuss some problems which are analogous to, but formally not comprehended within, the Zilber-Pink conjecture, involving collections of `special subvarieties' connected with uniformization maps of suitable domains.
Au début des années 2000, Haskell, Hrushovski and Macpherson ont décrit les ensembles interprétables dans un corps valué algébriquement clos à l'aide d'équivalents en plus grande dimension des boules. Plus précisément, ils ont prouvé l'élimination des imaginaires dans le language géométrique. Pendant la même période, l'intérêt des théoriciens des modèles pour les corps valués avec opérateurs s'est grandement développé. Les questions résolues pour ces structures tournent, pour la plupart, autour de l'élimination des quantificateurs et de la modération. Mais, au vu des résultats de Haskell, Hrushovski and Macpherson, il est […]
Sur les corps de nombres, l'obstruction de Brauer-Manin est la seule obstruction au principe local-global pour les torseurs sous des groupes linéaires connexes. Dans un article récent, Colliot-Thélène, Parimala et Suresh ont introduit un nouveau type d'obstruction au principe local-global sur les corps de fonctions de schémas réguliers intègres de dimension quelconque, et ils se demandent notamment si c'est la seule obstruction au principe local-global pour les torseurs sous des tores sur C((x,y)). Dans cet exposé, j'expliquerai pourquoi cette question admet une réponse affirmative.
14.00-14.45 Marc Bourdon (Lille) : Espaces hyperboliques, dimension conforme et cohomologie $ell _p$15.00-15.45 Masato Mimura (EPFL Lausanne) : Superintrinsic synthesis in fixed point properties15.45-16.15 pause café16.15-17.00 Mikael De La Salle (ENS Lyon) : Zuk's criterion for actions on Banach spaces