Designed and built with care, filled with creative elements

Top

Les theoremes de Hrushovski et leurs versions quantitatives.

ENS Salle W

La notion de sous-groups approximatif, introduite récemment par T. Tao, permet de comprendre les parties finies A d'un groupe dont la taille de l'ensemble des produits AA est beaucoup plus petite que |A|^2. Cette notion et les méthodes combinatoires utilisées pour l'étudier ont été couronnées de succès par le rôle qu'elles jouent dans la théorie spectrale des graphes (graphes expanseurs) d'une part et pour les applications arithmétiques qui en découlent (crible de Bourgain-Gamburd-Sarnak). Récemment, en connection avec la théorie des modèles et la stabilité, Hrushovski s'est intéressé au problème de […]

Arithmetic jet spaces: an overview.

ENS Salle W

Arithmetic jet spaces are analogues of arc spaces in which derivation operators are replaced by Fermat quotient operators. The talk is an overview of some of the main concepts, results, applications, and open questions pertaining to this topic.

Théorème de préparation quasianalytique et élimination des quantificateurs

ENS Salle W

Le ?Roethéorème de préparation?R de L. van den Dries et P. Speissegger affirme que les fonctions définissables dans les structures o-minimales polynomialement bornées admettent une forme factorisée. Dans le cas des structures engendrées par des algèbres quasianalytiques de fonctions réelles, nous montrons que cette factorisation admet une écriture explicite. Nous en déduisons un théorème d'élimination des quantificateurs dans ce cadre, dans l'esprit du théorème d'élimination démontré par J. Denef et L. van den Dries dans le cadre analytique.