Designed and built with care, filled with creative elements

Top

K3 surfaces: rational points and Picard numbers

Salle W

It is a widely accepted philosophy that the arithmetic of a variety,say over a number field, is governed by its geometry. Indeed, weexpect many rational points, if any, on Del Pezzo surfaces, while onsurfaces of general type, we expect that the rational points are notdense. On K3 surfaces, as for Del Pezzo surfaces, we expect morerational points for higher Picard numbers: for high enough Picardnumber, rational points are potentially dense by a result of Tschinkeland Bogomolov. In this talk, I will highlight some results on thearithmetic of K3 surfaces. I […]

Courbes rationnelles sur les surfaces K3 (d’après Li-Liedtke)

Salle W

On conjecture que toute surface K3 sur un corps algébriquement closcontient une infinité de courbes rationnelles. En travaillant encaractéristique mixte, on montre que c'est le cas pour les surfaces K3complexes dont le rang de Picard est impair.

Sur le groupe de Brauer transcendant

Salle W

Soit k un corps, K une clôture séparable, G le groupe de Galois absolu. Pour X une variété projective et lisse sur k, le groupe de Brauer de X s'envoie dans les invariants sous G du groupe de Brauer de X_K. On étudie le quotient. S'il reste du temps, sur un corps de nombres, on discutera la structure de l'ensemble de Brauer-Manin des variétés dont le groupe de Picard géométrique est sans torsion. On considèrera en particulier le cas des surfaces quartiques diagonales. (Travaux en commun avec A. Skorobogatov, Imperial […]