Designed and built with care, filled with creative elements

Top

H-minimality

ENS Salle W

My goal, in this talk, is to explain a new notion of minimality for (characteristic zero) Henselian fields, which generalizes C-minimality, P-minimality and V-minimality and puts no restriction on the residue field or valued group contrary to these previous notions. This new notion, h-minimality, can be defined, analogously to other minimality notions, by asking that 1-types, over algebraically closed sets, are entirely determined by their reduct to some sublanguage - in that case the pure language of valued fields. However, contrary to what happens with other minimality notions, particular care […]

The transitivity of Kim-independence

Sophie Germain salle 1016

The class of NSOP_1 theories contains the simple theories and many interesting non-simple theories, such as the omega-free PAC fields or generic vector spaces with a non-degenerate bilinear form. With Itay Kaplan, we introduced Kim-independence which agrees with non-forking independence within the simple theories and shares many of its nice properties within the simple NSOP_1 context. One very basic roadblock in lifting simplicity theory to the NSOP_1 setting, however, was transitivity: a free extension of a free extension should still be a free extension. This is almost immediate for non-forking […]

Après-midi de théorie de groupes

Salle W (DMA ENS)

14.00-14.45 Christophe Pittet (Genève), The exact convergence rate in the ergodic theorem of Lubotzky Phillips Sarnak.15.00-15.45 Thiebout Delabie (Orsay), High dimensional cuts and coarse embedding.16.15-17.00 Alina Vdovina (Newcastle), Ramanujan cubical complexes as higher-dimensional expanders.

Model theory of proalgebraic groups

Sophie Germain salle 2015

Inspired by the model theoretic study of profinite groups, we discuss the foundations of a model theoretic approach to proalgebraic groups. Our axiomatization is based on the tannakian philosophy. Through a tensor analog of skeletal categories we are able to consider neutral tannakian categories with a fibre functor as many-sorted first order structures. The theory of a diagonalizable proalgebraic group is well understood. It is determined by the theory of the base field and the theory of its character group. This is joint work with Anand Pillay.

Expansions de l’arithmétique de Presburger avec la propriété d’échange

Sophie Germain salle 2015

Soit G un groupe élémentairement équivalent à Z dans le langage de Presburger L_Pres. Soit L une expansion du langage L_Pres. On dit que la théorie de (G, L) est L_Pres-minimale si tout sous-ensemble L-définissable de M est L_Pres-définissable (où M est un modèle de la théorie). Si G=Z, des résultats de C. Michaux et R. Villemaire impliquent que Th(Z, L) est L_Pres-minimale ssi la clôture algébrique a la propriété d'échange. Dans cet exposé, je discuterai le cadre général. En particulier, nous verrons que Th(G,L) est L_Pres-minimale ssi la clôture […]

Characterizing NIP henselian fields

ENS Salle W

In this talk, we characterize NIP henselian valued fields modulo the theory of their residue field. Assuming the conjecture that every infinite NIP field is either separably closed, real closed or admits a non-trivial henselian valuation, this allows us to obtain a characterization of all theories of NIP fields.

The Mumford-Tate conjecture implies the algebraic Sato-Tate conjecture

ENS Salle W

The famous Mumford-Tate conjecture asserts that, for every prime number l, Hodge cycles are Q_l linear combinations of Tate cycles, through Artin's comparisons theorems between Betti and étale cohomology. The algebraic Sato-Tate conjecture, introduced by Serre and developed by Banaszak and Kedlaya, is a powerful tool in order to prove new instances of the generalized Sato-Tate conjecture. This previous conjecture is related with the equidistribution of Frobenius traces.Our main goal is to prove that the Mumford-Tate conjecture for an abelian variety A implies the algebraic Sato-Tate conjecture for A. The […]

Une construction d’extensions faiblement non ramifiées d’un anneau de valuation

ENS Salle W

Étant donné un anneau de valuation V de corps résiduel F et contenant un corps k, et une extension k' de k, on cherche à construire une extension V' de V contenant k', d'idéal maximal engendré par celui de V, et de corps résiduel composé de F et k'. On y parvient notamment si F ou k' est séparable sur k.

A valuative approach to the inner geometry of surfaces

Lipschitz geometry is a branch of singularity theory that studies the metric data of a germ of a complex analytic space.I will discuss a new approach to the study of such metric germs, and in particular of an invariant called Lipschitz inner rate, based on the combinatorics of a space of valuations, the so-called non-archimedean link of the singularity. I will describe completely the inner metric structure of a complex surface germ showing that its inner rates both determine and are determined by global geometric data: the topology of the […]

Après-midi de théorie de groupes

Salle W (DMA ENS)

14.00-14.45 Peter Haissinsky (Université d'Aix-Marseille), Quasi-isometric rigidity of 3-manifold groups.15.00-15.45 Nima Hoda (ENS Paris), Shortcut graphs and groups.16.15-17.00 Elia Fioravanti (Oxford), Cross ratios on cube complexesand marked length-spectrum rigidity.

Après-midi de théorie de groupes

Salle W (DMA ENS)

15.00-15.45 Ashot Minasyan (Southampton), CAT(0) groups with exotic properties16.15-17.00 Assaf Naor (Princeton), Vertical-versus-horizontal isoperimetry*NOTE* Urs Lang's talk has been moved to January 21

Groupes de Lie et définissabilité le cas (non) linéaire.

Sophie Germain salle 2015

Entre les catégories des groupes semialgébriques et des groupes de Lie se trouve la catégorie des groupes définissables dans une expansion o-minimale des réels (noté simplement définissables dans la suite). Puisque tout groupe définissable peut être équipé d'une structure de groupe de Lie (Pillay 1989), il est intéressant de savoir sous quelles conditions un groupe de Lie est isomorphe (au sens de Lie) à un groupe définissable. Starchenko, Onshuus et Conversano ont répondu à cette question dans le cas où le groupe est résoluble (2016). Nous nous intéresserons ici au […]