Designed and built with care, filled with creative elements

Top

On the conjecture of Ihara/Oda-Matsumoto

ENS Salle W

Following the spirit of Grothendieck's Esquisse d'un Programme, the Ihara/Oda-Matsumoto conjecture predicted a combinatorial description of the absolute Galois group of Q based on its action on geometric fundamental groups of varieties. This conjecture was resolved in the 90's by Pop using anabelian techniques. In this talk, I will discuss the proof of stronger variant of this conjecture, using mod-ell two-step nilpotent quotients, while highlighting some connections with model theory.

Géométrie des arcs et singularités

ENS. salle W

Soulignée par Nash dans les années 60, l'interaction entre la géométrie des espaces d'arcs et la théorie des singularités s'est fortement amplifiée sous l'influence de la théorie de l'intégration motivique notamment. Dans cet exposé, nous introduirons le schéma des arcs associé à une variété algébrique et donnerons quelques illustrations de cette interaction. Parmi elles, nous parlerons de l'interprétation (possible) du point de vue des singularités d'un théorème de Drinfeld et Grinberg-Kazhdan démontré au début des années 2000. (Cette dernière partie de l'exposé s'appuie sur une collaboration avec David Bourqui.)

The geometry of combinatorially extreme algebraic configurations

ENS. salle W

Given a system of polynomial equations in m complex variables with solution set of dimension d, if we take finite subsets X_i of C each of size at most N, then the number of solutions to the system whose ith co-ordinate is in X_i is easily seen to be bounded as O(N^d). We ask: when can we improve on the exponent d in this bound?Hrushovski developed a formalism in which such questions become amenable to the tools of model theory, and in particular observed that incidence bounds of Szemeredi-Trotter type […]

Elimination des quantificateurs dans les D-groupes

Sophie Germain salle 1016.

On sait que la théorie DCF_0 des corps différentiellement clos de caractéristique 0, élimine les quantificateurs dans le langage { + , - , · , 0 , 1 , D } des anneaux différentiels. Pierce et Pillay ont montré que tout ensemble définissable est une combinaison booléenne d'ensembles définis par des D-variétés. Une D-variété est une paire (V, s), où V est une variété algébrique, et s: V

Spectral gap and definability

Amphitheatre Hermite IHP

Originating in the theory of unitary group representations, the notion of spectral gap has played a huge role in many of the deep results in the theory of von Neumann algebras in the last couple of decades. Recently, with my collaborators, we are slowly understanding the model-theoretic significance of spectral gap, in particular its connection with definability. In this talk, I will discuss a few of our recent observations in this direction and speculate on some further possible developments. I will assume no knowledge of von Neumann algebras nor continuous […]

Effective Chabauty and the Cursed Curve

Institut Henri Poincaré amphi Hermite

The Chabauty method often allows one to find the rational points on curves of genus at least 2 over the rationals, but has a lot of limitations. On a theoretical level, the Mordell-Weil rank of the Jacobian of the curve has to be strictly smaller than its genus. In practice, even when this condition is satisfied, the relevant Coleman integrals can usually only be computed for hyperelliptic curves. We will report on recent work of ours (with different combinations of collaborators) on extending the method to more general curves. In […]

Blurred Complex Exponentiation

Amphitheatre Hermite IHP

Zilber conjectured that the complex field equipped with the exponential function is quasiminimal: every definable subset of the complex numbers is countable or co-countable. If true, it would mean that the geometry of solution sets of complex exponential-polynomial equations and their projections is somewhat like algebraic geometry. If false, it is likely that the real field is definable and there may be no reasonable geometric theory of these definable sets.I will report on some progress towards the conjecture, including a proof when the exponential function is replaced by the approximate […]

Mauvaises places pour l’obstruction de Brauer-Manin dans les espaces homogènes.

ENS Salle W

L'obstruction de Brauer-Manin explique (en partie) le défaut de densité des points rationnels d'une variété X dans le produit des points sur les différents complétés du corps de base. Conjecturalement, cette obstruction est la seule pour les variétés rationnellement connexes. Cela a pour conséquence l'existence d'un ensemble fini de mauvaises places en dehors desquelles on a en effet la densité souhaitée.Dans cet exposé, je montrerai comment décrire explicitement un tel ensemble de mauvaises places pour un espace homogène d'un groupe semisimple et simplement connexe à stabilisateurs finis. Cela passe par […]

L’espace adélique d’un tore sur un corps de fonctions.

ENS Salle W

Soient k un corps de caractéristique zéro et K le corps des fonctions d'une courbe X sur k. Soient T un K-tore, S un ensemble finide points fermés de X, et T(A,S) l'espace adélique de T hors de S. On démontre que l'ensemble des points rationnels T(K) estdiscret dans T(A,S), puis on calcule le quotient T(A,S)/T(K) en fonction de la cohomologie galoisienne de T dans les trois cassuivants : k algébriquement clos, k=C((t)), et k p-adique.

Autour d’une conjecture de Kato et Kuzumaki

ENS Salle W

En 1986, Kato et Kuzumaki ont émis des conjectures concernant les liensentre la dimension cohomologique des corps, la K-théorie de Milnor etles hypersurfaces projectives de petit degré. Ces conjectures sontfausses en toute généralité, mais elles restent ouvertes pour les corpsqui apparaissent usuellement en arithmétique et en géométrie algébrique.Dans cet exposé, je présenterai plusieurs résultats en lien avec lesconjectures de Kato et Kuzumaki pour les corps globaux et pour certainscorps de fonctions.

Au sujet d’une conjecture de Voskresenskii

ENS Salle W

Dans cette collaboration avec M. Florence, nous nous intéressons à la question de savoir quand les notions de rationalité et rationalité stable sont équivalentes. Nous traitons cette question dans le cas des tores, où une réponse positive est conjecturée par Voskresenskii. Pour une certaine classe de tores, cette conjecture est prouvée par Klyachko à l'aide de principes généraux. Nous donnons une nouvelle preuve explicite, en passant par des morphismes simples, menant à une application en cryptographie.