Science Nature Day
Lorem ipsum oin gravida nibh vel veliauctor aliquenean sollicitudin, lorem quis bibendum auctor, nisi elit consequat ipsutis sem nibh id elit.
Lorem ipsum oin gravida nibh vel veliauctor aliquenean sollicitudin, lorem quis bibendum auctor, nisi elit consequat ipsutis sem nibh id elit.
14.00-14.45 Martin Bridson (Oxford), Profinite rigidity and hyperbolic 3-orbifolds15.00-15.45 Arnaud Hilion (Marseille): Boundary of cyclic hyperbolic extensions of free groups15.45-16.15 pause café16.15-17.00 Damien Gaboriau (ENS Lyon), On non-vanishing of the cohomology of Aut(Fn) and Out(Fn) in top dimensions
Tuesday, 13 November14.00-14.45 Miklos Abert (Renyi Institute Budapest)15.00-15.45 Arman Darbinyan (ENS Paris)15.45-15.15 coffee break16.15-17.00 Rachel Skipper (Göttingen and ENS Lyon)
Les groupes de fardeau fini sont les groupes NTP_2 qui correspondent aux groupes stables ou simples de rang fini. Or, le fardeau est plus difficile à manipuler car il n'est pas forcément additif par fibration. Nous montrons que ces groupes sont virtuellement abélien-par-fini, et les anneaux sont virtuellement fini-par-nuls. Ceci améliore un résultat de Kaplan, Levi et Simon qui avaient démontré qu'un groupe dp-minimal est virtuellement nilpotent.Travail en commun avec Jan Dobrowolski
In this talk I will describe a joint work (still in progress) with E. Hrushovski and F. Loeser, in which we explain how the integrals I have defined with Chambert-Loir on Berkovich spaces can beseen (in the t-adic case) as limits of usual integrals on complex algebraic varieties
The expressive power of first-order logic in the class of finitely generated fields, as structures in the language of rings, is relatively poorly understood. For instance, Pop asked in 2002 whether elementarily equivalent finitely generated fields are necessarily isomorphic, and this is still not known in the general case. On the other hand, the related situation of finitely generated rings is much better understood by recent work of Aschenbrenner-Khélif-Naziazeno-Scanlon.Building on work of Pop and Poonen, and using geometric results due to Kerz-Saito and Gabber, I shall show that every infinite […]
In several papers, R. Cluckers and D. Miller have built and investigated a class of real functions which contains the subanalytic functions and which is closed under parameterized integration. This class does not allow any oscillatory behavior, nor stability under Fourier transform. On the other hand, the behavior of oscillatory integrals, in connection with singularity theory, has been heavily investigated for decades. In this talk, we explain how to build a class of complex functions, which contains the subanalytic functions and their complex exponentials, and which is closed under parameterized […]
In pseudofinite structures, the non-standard size of definable sets often reveals important algebraic or model theoretic properties of the corresponding theories. In this talk, we will give two new examples of this correlation. One is between the coarse dimension and the transformal transcendental degree in certain class of pseudofinite difference fields. The other example is that in pseudofinite H-strucures which are built from one-dimensional asymptotic classes, the coarse dimension of a tuple corresponds to the coefficient of the leading term of SU-rank of this tuple. This is the first step […]
La théorie d'un corps algébriquement clos de caractéristique positive p muni d'un prédicat pour un sous-groupe additif admet une modèle-compagne ACF_pG. On se propose de décrire ce nouvel exemple de théorie NSOP_1, en décrivant les imaginaires, le Kim-forking et le forking. On parlera aussi de la généralisation de cette construction afin de présenter de nouveaux exemples de théories NSOP_1.
14.00-14.45 Dawid Kielak (Bielefeld)Fibring of residually finite rationally-solvable groups14.45 -15.15 coffee break15.15-16.00 Damian Osajda (Wroclaw and McGill, Montreal)A combination theorem for combinatorially non-positively curved complxes of hyperbolic groups
We prove the Ax-Lindemann-Weierstrass theorem for the uniformizing functions of genus zero Fuchsian groups of the first kind. Our proof relies on differential Galois theory of Schwarzian equations and machinery from the model theory of differentially closed fields. This result generalizes previous work of Pila-Tsimerman on the j function. (Joint work with James Freitag and Joel Nagloo)
I will present a bound for the number of F_q-points of bounded degree in a variety defined over Z, uniform in q. This generalizes work by Sedunova for fixed q. The proof involves model theory of valued fields with algebraic Skolem functions and uniform non-Archimedean Yomdin-Gromov parametrizations. This is joint work with Raf Cluckers and François Loeser.