Geometric invariants that are encoded in the Newton polygon
ENS Salle WLet k be a field and let P be a lattice polygon, i.e. the convex hull in R^2 of finitely many non-collinear points of Z^2. Let C/k be the algebraic curve defined by a sufficiently generic Laurent polynomial that is supported on P. A result due to Khovanskii states that the geometric genus of C equals the number of Z^2-valued points that are contained in the interior of P. In this talk we will give an overview of various other curve invariants that can be told by looking at the […]