Un nouvel analogue de l’o-minimalité dans des corps valués
ENS Salle WPour les corps réel clos, la notion d'o-minimalité a eu un énorme succès
Pour les corps réel clos, la notion d'o-minimalité a eu un énorme succès
Dans un travail en commun avec Yonatan Harpaz, nous démontrons que l'obstruction de Brauer-Manin contrôle l'existence de zéro-cycles de degré 1 pour les espaces homogènes de groupes linéaires sur les corps de nombres. La méthode employée redonne aussi une réponse positive au problème de Galois inverse, sur tout corps de nombres, dans le cas des groupes finis nilpotents. Le but de cet exposé sera d'expliquer la démonstration dans un certain détail.
We study the rationality problem for quadric bundles X over rational bases S. By a theorem of Lang, such bundles are rational if r > 2^n-2, where r denotes the fibre dimension and n = dim(S) denotes the dimension of the base. We show that this result is sharp. In fact, for any r at most 2^n-2, we show that many smooth r-fold quadric bundles over rational n-folds are not even stably rational. Our result is based on a generalization of the specialization method of Voisin and Colliot-Thélène-Pirutka.
Etant donnée une théorie T modèle-complete de corps topologiques, on considère son expansion différentielle générique et sous une hypothèse de largeur sur le corps, on peut axiomatiser la classe des modèles existentiellement clos.On montrera un résultat de densité sur les types définissables sur des sous-ensembles définitionnellement clos dans les modèles de telles théories. Ensuite on montrera deux résultats de transfert l'un sur la VC-densité (lorsque T est NIP) et l'autre sur la propriété combinatoire NTP2.
14.00-14.45 Roman Mikhailov (St.Petersburg): Around nilpotent completion.15.00-15.45 Gilbert Levitt (Caen): On elementary equivalence of hyperbolic groups.15.45-16.15 coffee break16.15-17.00 Ivan Mitrofanov (ENS): Algorithmic problems for self-similar groups.
Artin a résolu le 17ème problème de Hilbert : un polynôme réel positif en n variables est somme de carrés de fractions rationnelles. Pfister a amélioré ce résultat en démontrant qu'il est somme de 2^n carrés. Décider si la borne 2^n de Pfister est optimale est un problème ouvert si n>2. Nous expliquerons que cette borne peut être améliorée en petit degré et, en deux variables, pour un ensemble dense de polynômes positifs.
The classical theory of abstract projective geometries establishes an equivalence between axiomatically defined incidence systems of points and lines and projective planes defined over a field. Zilber's Restricted Trichotomy conjecture in dimension one is a generalization of this statement in a sense, with lines replaced by algebraic curves
I discuss a back-and-forth technique for proving that in certain expansions of the complex field every L_{infty, omega}-definable subset of C: is either countable or co-countable. Some successes of the method will also be discussed.
Cet exposé est basé sur un travail commun avec Charles de Clercq et Maksim Zhykhovich. Une variété de drapeaux généralisée d'un groupe algébrique G est dite critique si c'est une variété test pour la classe d'équivalence motivique du groupe G. Dans cet exposé, nous montrerons que tout groupe algébrique classique possède une variété critique. Ce résultat généralise le cas des groupes orthogonaux des formes quadratiques, dû à des travaux antérieurs de Vishik et de Clercq.
Cet exposé est basé sur un travail commun avec Charles de Clercq et Maksim Zhykhovich. Une variété de drapeaux généralisée d'un groupe algébrique G est dite critique si c'est une variété test pour la classe d'équivalence motivique du groupe G. Dans cet exposé, nous montrerons que tout groupe algébrique classique possède une variété critique. Ce résultat généralise le cas des groupes orthogonaux des formes quadratiques, dû à des travaux antérieurs de Vishik et de Clercq.