Complex Cellular Structures
ZoomReal semialgebraic sets admit so-called cellular decomposition, i.e. representation as a union of convenient semialgebraic images of standard cubes. The Gromov-Yomdin Lemma (later generalized by Pila and Wilkie) proves that the maps could be chosen of C^r-smooth norm at most one, and the number of such maps is uniformly bounded for finite-dimensional families. This number was not effectively bounded by Yomdin or Gromov, but itnecessarily grows as r ? ?. It turns out there is a natural obstruction to a naive holomorphic complexification of this result related to the natural […]