Russel Avdek, tell me about the complex origins of mapping class relations !
Russel Avdek, tell me about the complex origins of mapping class relations !
I’ll talk about relations between products of Dehn twists along simple closed curves on an oriented surface F. We view these products as elements of the boundary-relative mapping class group of F. A famous example is the `lantern relation’, discovered by D. Johnson in the 70s by drawing pictures. I’ll describe how many such relations, such as the lantern, can be discovered by viewing F as a complex 1-manifold sitting inside of a complex 2-manifold as part of a `Lefschetz fibration’. Time permitting, I’ll mention higher-dimensional generalizations and open problems.