Designed and built with care, filled with creative elements

Top

Comportement en temps long pour le systeme de Boussinesq

Campus de Jussieu salle 309 3e étage barre 15-16

Nous etudions le probleme du transfer de la chaleur dans unfluide incompressible, sous l'approximation de Boussinesq.Nous etudions le comportement des solutions dans laregion parabolique $|x|>!!>t^{1/2}$ : notre analyse montreque certaines normes $L^p$ des solutions, et notamment la norme d'energie,deviennent arbitrairement grandes en temps long.Il s'agit d'un travail en collaboration avec Maria Schonbek (UCSC).

Atomic-to-continuum derivation in Elasticity with interface energy

Campus de Jussieu salle 309 3e étage barre 15-16.

I will present an atomic-to-continuum derivation in nonlinearelasticity. The atomistic model is based on a two-body interactionenergy, with a potential of the Lennard-Jones type. Performing apointwise Taylor expansion, we obtain a continuum model that predictselastic energy, sharp-interface energy and smooth-interface energy. Thisalso gives a method to describe the configuration of the atoms betweentwo consecutive sharp interfaces, which qualitatively agrees withexperiments in Ni-Mn alloys presenting microstructure.

Une perturbation stochastique de l’équation d’Allen-Cahn

IHP Salle 314

In this talk we consider a stochastically perturbed Allen-Cahn equation. Theclassical Allen-Cahn equation describes phase separation of non-conservedfields. In the so-called sharp interface limit solutions converge tosolutions of mean curvature flow. We consider here additional random effectsin form of a perturbation by a stochastic flow. We present a tightnessresult in the sharp interface limit and discuss the relation to a version ofstochastically perturbed mean curvature flow. (This is joint work withHendrik Weber from Warwick.)

Analyticity of the streamlines for periodic traveling free surface water waves with vorticity

IHP Salle 314

The streamlines of periodic irrotationaltraveling water waves are known to be real-analytic,with exception of the free surface in the case thewave of greatest height which has a corner at the wavecrest (the lateral tangents being at an angle of 2pi/3).The regularity of waves of small and moderate amplitudeis, perhaps surprisingly, little affected by thepresence of vorticity in the flow. This is joint workwith J. Escher.