Designed and built with care, filled with creative elements

Top

Quasistatic crack growth in finite elasticity

Chevaleret

We present a variational model for quasistatic evolutions of brittle cracks in hyperelastic bodies, in the context of finite elasticity.All existence results on this subject that can be found in the mathematical literature were obtained using energy densities with polynomial growth. This is not compatible with the standard assumption in finite elasticity that the strain energy diverges as the determinant of the deformation gradient tends to zero. On the contrary, we consider a wide class of energy densities satisfying this property

Entire solutions to equivariant elliptic systems with variational structure

Chevaleret

We consider an elliptic system with variational structure. After making some general remarks, we focus on potentials that possess several global minima and are invariant under a finite reflection group G. We establish existence of G-equivariant entire solutions connecting the global minima.

Rigorous stability/bifurcation analysis for strong detonation waves

Chevaleret

We present recent results with B. Texier developing a rigorous nonlinear theory of stability and bifurcation of strong detonation waves of the full reacting Navier-Stokes (rNS) equations, based on natural spectral stability/bifurcation conditions. We discuss in parallel recent singular perturbation results showing that in the small viscosity limit these conditions reduce to the corresponding conditions for the ZND, or reacting Euler, equations that are more commonly studied in the detonation literature. This yields immediately numerical verification of the (rNS) conditions through the voluminous numerical literature on (ZND).

Some regularity results for ultraparabolic equations

Institut Henri Poincaré - salle 314

I shall talk about some regularity results for the ultraparabolic equation, in particular, the C^{alpha}$ regularity of weak solutions. The problem arises from the Prandtl's boundary layer system under the Crocco transformation. I shall also report some recent results on the backward uniqueness of ultraparabolic equations.

Flambage de McKean-Vlasov

Institut Henri Poincaré salle 201

L'évolution de McKean-Vlasovest équivalente à la descente du gradient de l'énergie libre sur la « variété riemannienne » de dimension infinie associée à la métrique de Wasserstein quadratique. On se place ici dans le cas d'une évolution sur R^d avec un potentiel d'interaction attractif,{{à courte portée}} et {{non singulier}}.L'étude de l'équation linéarisée montre alors que l'équilibre correspondant à une distribution homogène est tantôt instable et tantôt stable selon la température. L'enjeu de cet exposé est d'établir des résultats rigoureux sur cette transition de phase qui aillent au-delà du cadre linéarisé […]