Loading [MathJax]/extensions/tex2jax.js

Designed and built with care, filled with creative elements

Top
Image Alt

La recherche

  /  La recherche

Activités scientifiques du département

Le DMA est à la fois un département d'enseignement et un département de recherche. Cette structuration originale vise notamment à mettre très tôt les élèves au plus près de la recherche en train de se faire.

Publications

L'essentielle de publications des membres du département, des thèses et des HDR qui y sont soutenues sont disponibles sur le serveur HAL.

  • 2 July 2025 hal-00002667 publication

    We give an expression for the minimum energy of a map between a three-dimensional manifold and a surface, with prescribed vortex-like singularities. We find that the topological type of the target needs to be restricted for the problem to be meaningful. We extend results of Brezis-Coron-Lieb for maps from 3-space to the standard 2-sphere. This is made possible by the use of Fermi-Walker transport.

    Haïm Brezis, Satyanad Kichenassamy

  • 2 July 2025 hal-05139923 pré-publication

    The Calderón problem consists in recovering an unknown coefficient of a partial differential equation from boundary measurements of its solution. These measurements give rise to a highly nonlinear forward operator. As a consequence, the development of reconstruction methods for this inverse problem is challenging, as they usually suffer from the problem of local convergence. To circumvent this issue, we propose an alternative approach based on lifting and convex relaxation techniques, that have been successfully developed for solving finite-dimensional quadratic inverse problems. This leads to a convex optimization problem whose solution coincides with the sought-after coefficient, provided that a nondegenerate source condition holds. We demonstrate the validity of our approach on a toy model where the solution of the partial differential equation is known everywhere in the domain. In this simplified setting, we verify that the non-degenerate source condition holds under certain assumptions on the unknown coefficient. We leave the investigation of its validity in the Calderón setting for future works.

    Giovanni S Alberti, Romain Petit, Simone Sanna

  • 16 April 2025 tel-05036943 thèse

    This thesis intends to make a contribution to the theories of algebraic cycles and moduli spaces over the real numbers. In the study of the subvarieties of a projective algebraic variety, smooth over the field of real numbers, the cycle class map between the Chow ring and the equivariant cohomology ring plays an important role. The image of the cycle class map remains difficult to describe in general; we study this group in detail in the case of real abelian varieties. To do so, we construct integral Fourier transforms on Chow rings of abelian varieties over any field. They allow us to prove the integral Hodge conjecture for one-cycles on complex Jacobian varieties, and the real integral Hodge conjecture modulo torsion for real abelian threefolds. For the theory of real algebraic cycles, and for several other purposes in real algebraic geometry, it is useful to have moduli spaces of real varieties to our disposal. Insight in the topology of a real moduli space provides insight in the geometry of a real variety that defines a point in it, and the other way around. In the moduli space of real abelian varieties, as well as in the Torelli locus contained in it, we prove density of the set of moduli points attached to abelian varieties containing an abelian subvariety of fixed dimension. Moreover, we provide the moduli space of stable real binary quintics with a hyperbolic orbifold structure, compatible with the period map on the locus of smooth quintics. This structure identifies the moduli space of stable real binary quintics with a non-arithmetic ball quotient.

    Olivier De Gaay Fortman

Les actualités de la recherche

Annonce de conférences, congrès et autres événements scientifiques.

annales_ens

Annales de l’ENS

Les Annales scientifiques de l’École normale supérieure publient 6 fascicules par an. Elles sont éditées par la Société mathématique de France depuis 2008.