Designed and built with care, filled with creative elements

Top

Algebre differentielle et geometrie des orbites. Une nouvelle correpondance galoisienne.

amphithéâtre Rataud

La théorie classique de Picard-Vessiot fournit une correspondance galoisienne pour les extensions de corps différentiels. Nous présenterons une correspondance plus fine, sous forme d'une anti-équivalence de catégories entre algèbres de solutions associées à une équation différentielle linéaire (algèbres différentielles engendrées par un nombre fini de polynômes en les solutions fondamentales de l'équation) et variétés affines quasi-homogènes sous l'action du groupe de Galois différentiel. Une telle correspondance joue aussi dans le contexte plus général des connexions (intégrables ou non). Nous évoquerons le parti que cette correspondance permet de tirer, en algèbre […]

Zéro cycles sur les variétés rationnellement connexes

Salle W

Nous allons parler de l'obstruction de Brauer-Manin pour les 0-cycles sur les variétés rationnellement connexes, particulièrement sur certaine fibrations au-dessus de l'espace projectif et certaine espaces homogènes.Références: http://arxiv.org/abs/1011.5995 et http://arxiv.org/abs/1107.1634

Tate-Shafarevich groups whose finiteness implies Leopoldt’s conjecture

Salle W

Given a number field k and a prime number p, we are interested in mixed Artin-Tate-motives M over k and in the ell-adic Galois representations attached to them. With these objects one can associate so-called Tate-Shafarevich groups. Their vanishing is, by construction, the obstruction to certain local-global principles. I will show how Leopoldt's conjecture for k and p follows from the finiteness of these groups.

Fibrés projectifs homogènes sur les variétés abéliennes I

Salle W

Soit X une variété abélienne sur un corps algébriquement clos.Un fibré projectif sur X est dit homogène s'il est isomorphe à ses tirésen arrière par toutes les translations. On présente une classificationdes fibrés projectifs homogènes en termes de groupes algébriques

Fibrés projectifs homogènes sur les variétés abéliennes II

Salle W

Soit X une variété abélienne sur un corps algébriquement clos.Un fibré projectif sur X est dit homogène s'il est isomorphe à ses tirésen arrière par toutes les translations. On présente une classificationdes fibrés projectifs homogènes en termes de groupes algébriques

Classes de cycles et invariants birationnels

Salle W

Si X est une variété complexe projective lisse de dimension n, le groupe des classes de Hodge entières sur X de degré 2n-2 modulo le sous-groupe engendrépar les classes de 1-cycles de X est un invariant birationnel de X. Ce groupe est en général non trivial, comme montré par Kollár.Je discute dans cet exposé quelques résultats semblant indiquer quece groupe est trivial en généralpour les variétés rationnellement connexes. Tout d'abord, il est trivialpour les variétés uniréglées de dimension 3.En dimension quelconque, il est trivial pour les variétés rationnellement connexessi la […]

Arithmetic of cubic surfaces

Salle W

We will look at the arithmitic properties of cubic surfaces. The main focus will be on 27 the lines and the Galois action on them.Different descriptions of the moduli space of cubic surfaces are used to construct several Galois groups.Finally we will inspect the Manin conjecture for these surfaces.

K3 surfaces and their Picard groups

Salle W

The goal of this talk is to report on a project to compute the Picard rank for certain K3 surfaces. The methods are based on reduction modulo p. They will be explained in some detail and examples will be given.At the end of the talk, a statistical test will be presented showing that for each K3 surface in two large samples, suitable primes may be found and the Picard rank may be determined. The samples are motivated by classical families considered by 19th century geometers.

On the divisibility of the Tate-Shafarevich group of an elliptic curve in the Weil-Châtelet group

Salle W

In this talk I will report on progress on the following two questions, the first posed by Cassels in 1961 and the second considered by Bashmakov in 1974. The first question is whether the elements of the Tate-Shafarevich group are infinitely divisible when considered as elements of the Weil-Châtelet group. The second question concerns the intersection of the Tate-Shafarevich group with the maximal divisible subgroup of the Weil-Chatelet group. This is joint work with Mirela Ciperiani.

Conjecture de torsion pour les schémas abéliens sur les courbes

Salle W

La conjecture de torsion prédit que si k est un corps de nombre etA une variété abélienne sur k alors l'ordre du sous-groupe de torsion deA(k) est borné par une constante ne dépendant que du degré de k sur Q etde la dimension de A.Cette conjecture n'est connue que pour les courbes elliptiques: Manin l'amontré en 69 pour les l-Sylow de la torsion (l:premier) puis Mazur (77),Kamienny (92), Merel (96) ont réussi a compléter la preuve en analysant lastructure des courbes modulaires X_{0}(l) (l:premier).Que les courbes elliptiques soient (essentiellement) classifiées […]

Counting rational points on conic bundle surfaces

Salle W

In this talk we consider the problem of counting the number of rational points of bounded height on certain intersections of two quadrics in five variables.These are del Pezzo surfaces of degree four, and we focus on the case where the surface has a conic bundle structure.