Designed and built with care, filled with creative elements

Top

Counting in pseudofinite structures

Salle 2015 Sophie Germain

In pseudofinite structures, the non-standard size of definable sets often reveals important algebraic or model theoretic properties of the corresponding theories. In this talk, we will give two new examples of this correlation. One is between the coarse dimension and the transformal transcendental degree in certain class of pseudofinite difference fields. The other example is that in pseudofinite H-strucures which are built from one-dimensional asymptotic classes, the coarse dimension of a tuple corresponds to the coefficient of the leading term of SU-rank of this tuple. This is the first step […]

Sous-groupe additif générique d’un corps algébriquement clos de caractéristique positive.

Sophie Germain salle 2015

La théorie d'un corps algébriquement clos de caractéristique positive p muni d'un prédicat pour un sous-groupe additif admet une modèle-compagne ACF_pG. On se propose de décrire ce nouvel exemple de théorie NSOP_1, en décrivant les imaginaires, le Kim-forking et le forking. On parlera aussi de la généralisation de cette construction afin de présenter de nouveaux exemples de théories NSOP_1.

Après-midi de théorie de groupes

Salle W

14.00-14.45 Dawid Kielak (Bielefeld)Fibring of residually finite rationally-solvable groups14.45 -15.15 coffee break15.15-16.00 Damian Osajda (Wroclaw and McGill, Montreal)A combination theorem for combinatorially non-positively curved complxes of hyperbolic groups

Ax-Lindemann-Weierstrass with derivatives and the genus 0 Fuchsian groups

ENS Salle W

We prove the Ax-Lindemann-Weierstrass theorem for the uniformizing functions of genus zero Fuchsian groups of the first kind. Our proof relies on differential Galois theory of Schwarzian equations and machinery from the model theory of differentially closed fields. This result generalizes previous work of Pila-Tsimerman on the j function. (Joint work with James Freitag and Joel Nagloo)

Uniform bound for points of bounded degree in function fields of positive characteristic

ENS Salle W

I will present a bound for the number of F_q-points of bounded degree in a variety defined over Z, uniform in q. This generalizes work by Sedunova for fixed q. The proof involves model theory of valued fields with algebraic Skolem functions and uniform non-Archimedean Yomdin-Gromov parametrizations. This is joint work with Raf Cluckers and François Loeser.

On differentially large fields.

ENS Salle W

Recall that a field K is large if it is existentially closed in K((t)). Examples of such fields are the complex, the real, and the p-adic numbers. This class of fields has been exploited significantly by F. Pop and others in inverse Galois-theoretic problems. In recent work with M. Tressl we introduced and explored a differential analogue of largeness, that we conveniently call ``differentially large''. I will present some properties of such fields, and use a twisted version of the Taylor morphism to characterise them using formal Laurent series and […]

Les groupes virtuellement libres sont presque homogènes

Sophie Germain salle 2015

Perin et Sklinos, et indépendamment Ould Houcine, ont démontré en 2011 que les groupes libres sont homogènes : deux éléments qui ont le même type sont dans la même orbite sous l'action du groupe d'automorphismes. Dans cet exposé, j'expliquerai que ce résultat reste presque vrai pour les groupes virtuellement libres, au sens suivant : l'ensemble des éléments ayant le même type qu'un élément donné contient un nombre fini d'orbites sous le groupe d'automorphismes, et ce nombre ne dépend pas de l'élément considéré. J'expliquerai également pourquoi je pense que ce résultat […]

Sous-groupes qui pavent génériquement et géométrie des involutions

(En collaboration avec Joshua Wiscons)L'exposé mélange théorie des modèles, théorie des groupes, et algèbre géométrique. On y parlera de groupes de rang de Morley fini, mais il suffit de savoir naïvement ce qu'est une dimension à valeurs entières, sans devoir maîtriser les finesses de la conjecture de Cherlin-Zilber.Un groupe abstrait porte peu d'information de nature géométrique, même au sens des géométries d'incidence, et c'est toujours remarquable si cela se produit.Le pur groupe SO(3,R), par exemple, permet de redéfinir l'espace projectif réel. PGL(2,C) permet presque la même chose : il définit […]

Scrollar invariants, resolvents, and syzygies

ENS Salle W

With every cover C -> P^1 of the projective line one can associate its so-called scrollar invariants (also called Maroni invariants) which describe how the push-forward of the structure sheaf of C splits over P^1. They can be viewed as geometric counterparts of the successive minima of the lattice associated with the ring of integers of a number field. In this talk we consider the following problem: how do the scrollar invariants of the Galois closure C' -> P^1 and of its various subcovers (the so-called resolvents of C -> […]

Definability in the infinitesimal subgroup of a simple compact Lie group

ENS Salle W

Joint work with Kobi Peterzil.Let G be a simple compact Lie group, for example G=SO_3(R). We consider the structure of definable sets in the subgroup G^{00} of infinitesimal elements. In an aleph_0-saturated elementary extension of the real field, G^{00} is the inverse image of the identity under the standard part map, so is definable in the corresponding valued field. We show that the pure group structure on G^{00} recovers the valued field, making this a bi-interpretation. Hence the definable sets in the group are as rich as possible.

Tame open core and small groups in pairs of topological geometric structures

ENS Salle W

Using the group configuration theorem, Hrushovski and Pillay showed that the law of a group definable in the reals or the p-adics is locally an algebraic group law, up to definable isomorphism. There are some natural expansions of these two theories of fields, by adding a predicate for a dense substructure, for example the algebraic reals or the algebraic p-adics. We will present an overview on some of the features of these expansions, and particularly on the characterisation of open definable sets as well as of groups definable in the […]

Density of the union of Cartan subgroups of o-minimal groups

Sophie Germain salle 2015

Let G be a group. A subgroup H of G is a Cartan subgroup ofG if H is a maximal nilpotent subgroup of G, and for every normal finiteindex subgroup X of H, X has finite index in its normalizer in G.We consider Cartan subgroups of definably connect groups definable inan o-minimal structure. In we proved that, in this context,Cartan subgroups of G exist, they are definable and they fall infinitely many conjugacy classes.In this talk I will prove that the union of the Cartan subgroups isdense in the group, […]