Designed and built with care, filled with creative elements

Top

Thomas Serafini : Mondromie et équations différentielles

Salle W

La monodromie d'une famille d'espaces topologique est un objet qui donne des informations sur la déformation des fibres de la famille à homotopie près. J'expliquerai comment elle est, de manière relativement surprenante, reliée de près aux équations différentielles linéaires homogènes à coefficients holomorphes.

Ravi Ramakrishna, tell me about Wild and Tame Galois groups !

DMA Salle W

Absolute Galois groups have played a central role in most major breakthroughs in Algebraic Number Theory in the last half century. Typically the action of these groups is through an "almost pro-p quotient" with ramification at primes above p. For such groups the Poitou-Tate duality theorems are powerful. These theorems do not hold for pro-p groups unramified at primes above p. I will survey how this tame situation differs from the wild one above and introduce theorems of Labute and Schmidt which give situations where certain tame Galois groups have […]

Arithmétique des équations en un grand nombre de variables

ENS — amphi Galois 45 rue d'Ulm, Paris, France

Intuitivement, étant donnée une équation polynomiale à coefficients dans un corps K, on s'attend à ce qu'elle ait plus de chances d'avoir des solutions si elle fait intervenir un grand nombre de variables et si elle a un petit degré. Ce sont Artin et Lang qui, dans les années 50, ont formalisé cette idée. Je présenterai un certain nombre de résultats et de problèmes ouverts dans ce domaine où les questions ont tendance à être élémentaires à formuler mais difficiles à résoudre.

Méthode de la platitude pour la contrôlabilité de système couplé d’équations de la chaleur

Jussieu -- salle 15-16-309 4 Place Jussieu, Paris, France

Orateur : Takéo Takahashi Titre : Méthode de la platitude pour la contrôlabilité de système couplé d'équations de la chaleur Résumé : Dans un première partie, je rappellerai quelques notions et propriétés classiques de contrôlabilité pour les systèmes de dimensions finies ou infinies. Je montrerai notamment comment utiliser la platitude pour résoudre certains problèmes de contrôle en dimension finie ou pour l'équation de la chaleur. Ce dernier cas correspond à un article de Martin, Rosier et Rouchon de 2014. Dans la seconde partie, je présenterai des travaux obtenus avec Blaise […]

Grégory Ginot, raconte-moi l’hypothèse du cobordisme !

DMA Salle W

L'hypothèse du cobordisme est une conjecture qui depuis son introduction par Baez et Dolan, et sa formulation précise par Lurie, a fortement motivé le développement des catégories supérieures, mais aussi le développement d'invariants spécifiques à différentes structures géométriques. Elle fait un lien entre les (approches modernes aux) catégories supérieures, les invariants des variétés et (plus lointain) la physique mathématique. Essentiellement, c'est une sorte d'analogue pour les théories des champs topologiques (qui peuvent être vus comme une forme hautement structurée d'invariants des variétés) des axiomes d'unicité des théories homologiques classiques d'Eilenberg—Steenrod. […]

Alexis Metz-Donnadieu : Une introduction à la géométrie brownienne

Salle W

Considérons une marche aléatoire (S_n)_n sur R dont les incréments sont des variables indépendantes de loi mu centrée, de variance finie. Indépendamment du choix de mu, les trajectoires de S convergent systématiquement lorsqu’on les renormalise vers la même trajectoire aléatoire : le mouvement brownien (c’est l’objet du fameux théorème de Donsker). En ce sens, le mouvement brownien est donc une limite d’échelle universelle d’une très large classe de modèles discrets de trajectoires aléatoires. De manière remarquable, un phénomène analogue existe pour d’autres classes de modèles discrets. Par exemple, de nombreux arbres […]

Eleanor Archer : titre à préciser

DMA Salle W

Les projections aléatoires constituent une technique de réduction de dimension simple et efficace en apprentissage automatique non supervisé. Elles reposent sur l'existence de quasi-immersions pour un ensemble de points d'un espace euclidien de haute dimension vers un espace de dimension inférieure. Nous proposerons une présentation du lemme de Johnson-Lindenstrauss centrée sur la notion de variable sous-gaussienne, puis nous discuterons de la meilleure manière de construire des projections simples, et en particulier creuses.

Nataniel Marquis, raconte-moi la correspondance de Langlands modulo p pour GL_2(Q_p) !

DMA Salle W

La correspondance de Langlands vise à établir un lien entre représentations des groupes de Galois absolus de corps de nombres / de corps locaux et représentations de groupes algébriques sur lesdits corps. Nous nous intéresserons à l'une des branches de ce problème : pour le groupe de Galois de Q_p, avec des anneaux de coefficients de caractéristique (résiduelle) p. Les représentations de dimension 1 du groupe de Galois de Q_p sur F_p peuvent se classer grâce à la théorie de corps de classes local. Elles sont alors naturellement reliées aux […]

Géométrie aléatoire sur la sphère

ENS — amphi Galois 45 rue d'Ulm, Paris, France

Si l’on considère un (grand) graphe dessiné sur la sphère, on obtient un espace métrique en munissant l’ensemble des sommets de la distance de graphe, la distance entre deux sommets étant le nombre minimal d’arêtes sur un chemin les reliant. Si l’on choisit le graphe au hasard, et si on fait tendre sa taille vers l’infini, on montre que l’espace métrique associé converge, en un sens que l’on précisera, vers un espace métrique aléatoire appelé la sphère brownienne. On donnera quelques idées de la preuve de ce résultat.

Tony Salvi : Dynamique des systèmes quantiques à la limite semi-classique

Salle W

Dans cet exposé, je montrerai comment la mécanique quantique est bien approximée par la physique classique lorsque la constante de Planck est considérée comme étant très petite, c’est-à-dire à la limite semi-classique. En particulier, nous passerons en revue les concepts de base de la mécanique quantique ainsi que quelques résultats mathématiques standards sur les limites semi-classiques et j’en donnerai des interprétations.

Compacité et incompacité en théorie des ensembles

ENS — amphi Galois 45 rue d'Ulm, Paris, France

En mathématiques, la compacité est une propriété très forte : elle permet d'étudier un objet donné en examinant simplement des sous-objets de taille inférieure. On peut étudier de grands objets finis en examinant certains de leurs sous-ensembles plus petits, ou on peut essayer de comprendre un objet infini en examinant des morceaux finis. En poussant plus loin, on peut étudier des objets qui ne sont pas dénombrables à l'aide d'approximations dénombrables. Dans cet exposé, nous examinerons un exemple spécifique, les limites inverses supérieures, et comment, dans ce cas, un phénomène  […]

Aksel Bergfeldt : Analyse harmonique sur le groupe de Heisenberg

Salle W

The Heisenberg group is one of the most simple non-Abelian Lie groups. The Lie algebra components (vector fields) X, Y, Z satisfy = Z. We recognise this relation from quantum mechanics, where the position and momentum operators satisfy this relation, or from signal processing, where it is satisfied by the operations of translating in frequency and translating in time. I have studied the Schrödinger equation formulated on the Heisenberg group, with the help of non-Abelian harmonic analysis. I will give some insight about how this differs from its Euclidean counterpart, […]